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Abstract

In this work, we compute the perfect forms for all imaginary quadratic fields of absolute
discriminant up to 5000 and study the number and types of the polytopes that arise. We prove
a bound on the combinatorial types of polytopes that can arise regardless of discriminant, and
give a volumetric argument for a lower bound on the number of perfect forms as well as a
heuristic for a better lower bound for imaginary quadratic fields of sufficiently large absolute
discriminant.
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1 Introduction

Quadratic forms are central objects in mathematics that have been studied for centuries. The
geometric theory of quadratic forms, developed by Hermite, can be viewed as part of Minkowski’s
geometry of numbers. The Hermite problem about finding the arithmetical minima of positive
definite quadratic forms is equivalent to the problem of densest lattice packings [30].

One approach to studying quadratic forms is using Voronoi’s reduction theory [36] of perfect
quadratic forms. Voronoi proves there is an infinite polyhedron Π in the space of quadratic forms
on which the arithmetic group Γ = GLn(Z) acts. The polyhedron is constructed using the minimal
vectors of quadratic forms. Specifically, the faces of Π determine the possible configurations of
minimal vectors of quadratic forms. The structure of Π captures much of the arithmetic information
of Γ.

Indeed, in the classical case of Γ = SL2(Z), Π descends modulo scaling to give the Farey
tessellation of H shown in Figure 1. The tessellation gives rise to a complex which can be used to
compute effectively with classical holomorphic modular forms. The main approach is the modular
symbol method, introduced by Birch [6] in 1971 and formalized by Manin [26] and further developed
by Mazur [27] and Cremona [12]. The technique for computing the action of the Hecke algebra
on modular forms has an interpretation in this setting in terms of the edges of this tessellation.
Homothety classes of perfect forms, forms that are uniquely determined by their minimal vectors
and arithmetic minimum, are in bijection with the facets of Π. In this setting, each ideal triangle
in the Farey tessellation of H is Γ-equivalent to the ideal triangle with vertices {∞, 0, 1}. This
implies that every perfect binary quadratic form is Γ-equivalent to the form ϕ(x, y) = x2−xy+ y2.
Dual to the tessellation is the trivalent tree of homothety classes of well-rounded binary quadratic
forms, forms whose minimal vectors span R2. Bass-Serre theory [31] allows one to use the action
of Γ on this tree to recover the amalgam structure of Γ. For groups acting on complexes of higher
dimensions, there is an analogous theory due to Gersten and Stallings [35], Haefliger [17], and
Corson [8].
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Figure 1. Triangulation of the Poincaré upper half-plane by ideal triangles shown here in black.
The well-rounded retract is the trivalent tree shown in teal.

These concepts have important analogues for Γ = GLn(OF ), where OF is the ring of integers
in a number field F . This project focuses on the case n = 2 with F an imaginary quadratic field.
In Section 2, we briefly outline the general Voronoi-Koecher theory of perfect forms and give a bit
of the history. In Section 3, we specialize to the imaginary quadratic field case and set notation.
In Section 4, we give our main results. First, we extend the explicit computations of Cremona [11]
and of the last author in [38] classifying perfect Hermitian forms to include all imaginary quadratic
fields of absolute discriminant up to 5000. The results are shown in Fig. 2. In Theorem 4.1, we
give a bound on the combinatorial complexity of the configuration of minimal vectors of perfect
binary Hermitian forms over imaginary quadratic fields, independent of the discriminant of the
field. In Theorem 4.7, we give a lower bound on the number of perfect binary Hermitian forms over
imaginary quadratic fields, as a function of the discriminant of the field.

We thank the referee for their helpful comments. The second author thanks the UNCG Graduate
School for their support through the Summer Research Fellowship, when part of this research was
conducted.

2 Voronoi complex and perfect forms

Let F be a number field with ring of integersOF . The space of positive definite quadratic/Hermitian
forms over F form an open cone in a real vector space. There is a natural decomposition of this
cone into polyhedral cones corresponding to the facets of the Voronoi-Koecher polyhedron Π [22, 2].

The Voronoi complex is the result of a polyhedral reduction theory for Γ developed by Ash [4,
Ch. II] and Koecher [22], generalizing Voronoi’s work [36] on perfect quadratic forms over Q.

Let X be the symmetric space associated to the group of real points of the restriction of scalars of
the general linear group G = ResF/Q(GLn). For Γ = GLn(OF ), their work asserts the existence of
a Γ-invariant tessellation of X coming from a polyhedral cone decomposition of a space of positive
definite quadratic/Hermitian forms. A spine for Γ, a Γ-equivariant deformation retract of X of
dimension equal to the virtual cohomological dimension of Γ, is guaranteed by this work and that
of Ash-McConnell [3] and can be recovered from the Voronoi tessellation. The CW-structure of the
tessellation and associated spine can be used to compute the cohomology of Γ, and the action of
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Table 1. The number Nperf of GLn(Z) equivalence classes of perfect forms.

n Nperf Authors

2 1 Voronoi [36]

3 1 Ibid.

4 2 Ibid.

5 3 Ibid.

6 7 Barnes [5]

7 33 Jacquet-Chiffelle [18, 19]

8 10916 Dutour-Schurmann-Vallentine [33]

Hecke operators on the complex group cohomology can also be described in terms of this structure.
Perfect forms are quadratic/Hermitian forms which are uniquely defined by their minimum and

set of minimal vectors. Rational perfect forms have been well-studied, and with current computing
power, n-ary forms have been classified for n ≤ 8 [33]. See Table 1 for the details.

The situation for perfect forms over number fields is far from complete. Indeed, there is even
disagreement over what perfection should mean for these forms. This project uses perfection in the
sense of Koecher and Ash described below.

Koecher [22] and Ash [2, 4] give a geometric definition of perfect forms. They generalize the
Voronoi polyhedron Π and define a quadratic form ϕ to be perfect if the minimal vectors of ϕ
are the vertices of a facet of Π. In [9] Coulangeon introduces a different notion of perfection for
quadratic forms over F known as Humbert forms. Coulangeon and Watanabe [10] extend Voronoi’s
theorem on extreme forms to Humbert forms; namely, a form is extreme if and only if it is perfect
and eutactic.

The top-dimensional cells in the Voronoi complex are in bijection with Γ-equivalence classes
of perfect n-ary forms. Thus a first step in computing the Voronoi complex is enumerating such
forms. The structure of such forms (number of Γ-equivalence classes of forms, configurations of
their minimal vectors) as n and F vary is not well understood outside of explicit computations.
Many such explicit computations have been carried out, and a survey of some of the known results
is given below.

Over F = Q, the number Nperf of GLn(Z)-equivalence classes of perfect forms appears to grow
rapidly with n (Table 1).

Computation of the Voronoi complex requires not just the perfect forms, but information about
lower-dimensional cells as well. As the number and complexity of the top-dimensional cells becomes
large, computation of the lower-dimensional cells becomes infeasible. This bottleneck has been
overcome for n ≤ 7 in work of Elbaz-Vincent-Gangl-Soulé [15] by taking advantage of external
symmetries of each cell. The n = 8 case is still out of reach, primarily due to the complexity of
the E8 lattice. The shortest vectors of this lattice form a convex polytope with 25,075,566,937,584
facets.

Over other number fields, the data is far less complete. The computations, even for n = 1, are
nontrivial. In Table 2, the known classifications of n-ary perfect forms over number fields are listed.
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Table 2. Classification of GLn(OF )-equivalence classes of perfect n-ary forms over number field
F .

n Field Authors

1 Q(
√
d), 0 < d ≤ 200000, d squarefree Y. [39]

Q(ζm), ϕ(m) ≤ 17 Sigrist [32]

Q(α), α3 + `α− 1 = 0, 4`3 + 27 squarefree Komatsu-Watanabe [23]

2 Q(
√
d), d ∈ {2, 3, 5, 6} Ong [29], Leibak [25]

Q(
√
−d), 0 < d ≤ 100, d squarefree Cremona [11], Y. [38]

Q(ζ5) Y. [37]

Q(α), α3 − α2 + 1 = 0 Gunnells-Y. [16]

Q(ζ12) Jones [20]

Q(ζ8) and Q(α), α4 − α3 + 2α2 + x+ 1 = 0 Jones, Sengun [21]

3 Q(
√
−1) Staffeldt [34]

Q(
√
D), discriminant −24 ≤ D < 0 AIM group [14]

4 Q(
√
D), D ∈ {−3,−4} AIM group [14]

3 Perfect forms over imaginary quadratic fields

In this section, we give just enough details to set the relevant notation. We follow [38, §3] and [14,
§2 and §6] closely, and the reader should reference these for additional details and a description of
the algorithms involved.

Fix a square-free positive integer d. Let F be the imaginary quadratic field F = Q(
√
−d), with

ring of algebraic integers OF . Then F has discriminant ∆ = −4d if d ≡ 1, 2 mod 4, and ∆ = −d
otherwise. The ring of integers OF is equal to Z[ω], where

ω =

{√
−d if d ≡ 1, 2 mod 4

1+
√
−d

2 if d ≡ 3 mod 4.

We fix a complex embedding F ↪→ C and identify F with its image. We extend this identification
to vectors and matrices as well, and use ·̄ to denote complex conjugation on C, the non-trivial Galois
automorphism on F .

Let V be the 4-dimensional real vector space of 2×2 complex Hermitian matrices with complex
coefficients,

V =

{[
a b
b̄ c

] ∣∣∣∣ a, c ∈ R, b ∈ C
}
.

Let C ⊂ V denote the subset of positive definite matrices. Then C is a codimension 0 open cone.
Here the boundary of the cone consists of semi-definite Hermitian forms; below we see that minimal
vectors of a Hermitian form can be represented by elements on the boundary of C.
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Using the chosen complex embedding of F , we view VF , the 2 × 2 Hermitian matrices with
entries in F , as a subset of V . Define a map q : O2

F \ {0} → V by q(x) = xx̄t. For each x ∈ O2
F , we

have that q(x) is on the boundary of C. Let C∗ denote the union of C and the image of q.
The group GL2(C) acts on V by g · A = gAḡt. The image of C in the quotient of V by

positive homotheties can be identified with hyperbolic 3-space H3. The image of q in this quotient
is identified with P1(F ) = F ∪ {∞}, the set of cusps.

Each A ∈ V defines a Hermitian form A[x] = x̄tAx, for x ∈ C2. Using the chosen complex
embedding of F , we can view O2

F as a subset of C2.

Definition 3.1. For A ∈ C, we define the minimum of A as

min(A) := inf
v∈O2

F \{0}
A[v].

Note that min(A) > 0 since A is positive definite. A vector v ∈ O2
F is called a minimal vector of A

if A[v] = min(A). We let Min(A) denote the set of minimal vectors of A.

Since O2
F is discrete in the topology of C2, the set Min(A) is finite. In fact, in Theorem 4.1, we

give an upper bound on the number of minimal vectors for any positive definite Hermitian form

over an imaginary quadratic field, independent of the field. A minimal vector

[
α
β

]
∈ O2

F generates

an ideal (α, β) ⊆ OF that has minimal norm among ideals in its class in the class group of F .

Definition 3.2. We say a Hermitian form A ∈ C is a perfect Hermitian form over F if

spanR{q(v) | v ∈ Min(A)} = V.

The above definition is equivalent to the more classical definition of a perfect form, as a Hermi-
tian form that is completely determined by its set of minimal vectors. That is, a Hermitian form
A is perfect if Min(A) determines A up to scaling by R+.

Definition 3.3. A polyhedral cone in V is a subset σ of the form

σ =

{
n∑
i=1

λiq(vi)

∣∣∣∣∣ λi ≥ 0

}
,

where v1, v2, . . . , vn are non-zero vectors in O2
F .

Definition 3.4. A set of polyhedral cones S forms a fan if the following two conditions hold:

1. If σ is in S and τ is a face of σ, then τ is in S.

2. If σ and σ′ are in S, then σ ∩ σ′ is a common face of σ and σ′.

Note that a face here can be of codimension higher than 1.

Theorem 3.5. There is a fan S in V with GL2(OF )-action such that the following hold.

1. There are only finitely many GL2(OF )-orbits in S.
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2. Every y ∈ C is contained in the interior of a unique cone in S.

3. Any cone σ ∈ S with non-trivial intersection with C has finite stabilizer in GL2(OF ).

The 4-dimensional cones in S are in bijection with perfect forms over F .

The bijection is explicit and allows one to compute the structure of S using a modification of
Voronoi’s algorithm [14, §2, §6]. Specifically, σ is a 4-dimensional cone in S if and only if there
exists a perfect Hermitian form A such that

σ =

 ∑
v∈Min(A)

λvq(v)

∣∣∣∣∣∣ λv ≥ 0

.
Modulo positive homotheties, the fan S descends to a GL2(OF )-tessellation of H3 by ideal polytopes.

Remark 3.6. If v ∈ Min(A), then −v ∈ Min(A). Following the conventions for the classical case,
we pick exactly one representative in {±v} to include in Min(A). Furthermore, the value A[v] only
depends on the image q(v). When the class number of F is greater than 1, there may be additional
vectors with the same image. For example, let F be the imaginary quadratic field of discriminant

−91, and let OF = Z[ω], where ω = 1+
√
−91
2 . Then ±

[
ω + 1
−ω + 4

]
and ±

[
5

−ω − 3

]
both have the

same image under q. They give rise to the same cusp ω+1
−ω+4 = 5

−ω−3 = w−4
7 . The prime 5 splits in

OF , so that 5OF = p5p̄5, and the ideal (ω + 1,−ω + 4) is p5, while the ideal (5,−ω − 3) is p̄5. It
follows that an ideal polytope in H3 determined by a perfect form over F may have strictly fewer
vertices than the form has minimal vectors.

4 Results

We computed the perfect forms for all imaginary quadratic fields F of absolute discriminant up to
5000, extending previous explicit computations [11] and [38]. In [38], the third author computed
perfect forms for all the class number 1 and 2 cases and for all the imaginary quadratic fields
Q(
√
−d) with square free d < 100, which was a total of 69 fields. We expanded this computation

to compute all fields with discriminant less than 5000 which was a total of 1524 fields. See Figure 2
for a plot of Nperf(F ) as a function of the discriminant of F .

The following theorem ensures that the configurations of minimal vectors of perfect binary
Hermitian forms do not get arbitrarily complicated. In particular, the number of minimal vectors
is bounded, independent of the imaginary quadratic field, so there are only a finite number of
combinatorial types of ideal polytopes arising in the Voronoi tessellation of H3.

Theorem 4.1. Let A be a positive definite binary Hermitian form over an imaginary quadratic
field. Then

# Min(A) ≤ 12.

Proof. Let VQ denote the set of 4× 4 symmetric matrices with entries in Q, viewed as quaternary
forms over Q. Recall for each imaginary quadratic field F , we let VF denote the set of 2 × 2
Hermitian matrices with entries in F , viewed as Hermitian forms over F . We construct a map
Φ: VF → VQ which takes a positive definite Hermitian form over F to a positive definite quaternary
form over Q.
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Figure 2. Number of perfect forms Nperf(F ), indexed by absolute discriminant of F .

There are exactly two perfect forms in the space of positive definite quaternary forms over Q
[24]; one with 12 minimal vectors and one with 10 minimal vectors. It follows that every positive
definite quaternary form over Q has at most 12 minimal vectors.

Fixing our Z-basis {1, ω} for OF , we get a bijection ϕ : O2
F → Z4. This induces a map Φ: VF →

VQ such that Φ preserves vector evaluation;

A[v] = Φ(A)[ϕ(v)], for all v ∈ O2
F .

Note the value of min(Φ(A)) is determined by min(A), since vector evaluation is preserved by
Φ. Since there are at most 12 minimal vectors for any quaternary form Φ(A), there can be at most
12 minimal vectors for A. q.e.d.

The bound in the above theorem is sharp. In particular, there are perfect forms with exactly 12
minimal vectors, up to sign. Furthermore, despite the phenomena described in Remark 3.6, where
the number of vertices is strictly less than the number of minimal vectors, the bound of 12 vertices
here is sharp. In particular, there are imaginary quadratic fields F for which there is a perfect form
that gives rise to an ideal polytope with 12 vertices.

Since the minimal vectors of each perfect form map to vertices of their corresponding polytopes
in the cone, and there are finitely many combinatorial types of polytopes with 12 or fewer vertices,
only finitely many types of polytopes can arise in a tessellation of H3 as we vary the discriminant
of the imaginary quadratic field.

Remark 4.2. According to the data from [13], there are 6,860,405 combinatorial types of 3-
dimensional polytopes with at most 12 vertices. However, in the range of our computational
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Table 3. The total number of fields that witnessed each polytope type and the total percentage
of each polytope type observed in the range of computation.

Polytope Type Number of Fields Percentage of Polytopes

tetrahedron 1504 91.524

octahedron 912 0.066

cuboctahedron 16 0.005

triangular prism 1511 2.416

hexagonal cap 1358 0.199

square pyramid 1506 5.764

truncated tetrahedron 60 0.007

triangular dipyramid 416 0.019

investigation, we only observed 8 distinct combinatorial types of polytopes: tetrahedron, octahe-
dron, cuboctahedron, triangular prism, hexagonal cap, square pyramid, truncated tetrahedron, and
triangular dipyramid. These were also the combinatorial types of polytopes observed in [38]. Table
3 summarizes the information about how often each type of polytope was observed and the number
of fields which witnessed these in the range of our computation.

Remark 4.3. As the discriminant increases, the total number of polytopes increases and appears
to be dominated by tetrahedra. The types of observed polytopes as a percentage of the total number
of polytopes computed (up to absolute discriminant 5000) are plotted in Figure 3.
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Figure 3. Observed polytope types as a percentage of total number of polytopes, indexed by
absolute discriminant of F .

Next, we compute a lower bound for the number of perfect forms over F by considering decom-
positions of the polytopes corresponding to perfect forms in the tessellation of H3. Each such poly-
tope can be decomposed into ideal tetrahedra without introducing new vertices. Since GL2(OF )-
translates of such tetrahedra cover H3, an upper bound on the number of tetrahedra required for
each polytope together with an upper bound on the volume of an ideal tetrahedron gives a lower
bound on the number of perfect forms Nperf(F ) involving the volume of the quotient GL2(OF )\H3.

The following bound on subdividing a polytope must be well known, but we could not find a
reference, so we give the proof here.

Lemma 4.4. Let P be a convex polytope with V vertices, with V > 6. Then there exists a
simplicial subdivision of P consisting of at most 2V − 9 tetrahedra.

Proof. First, we describe a well-known technique for subdividing P into tetrahedra. Triangulate
each face of P without adding vertices to get a polytope Q, so that vertex set Vert(Q) is the same
as the vertex set Vert(P ). Fix a vertex v in Vert(Q). Let Sv denote the set of triangular faces of
Q that do not contain v as a vertex. Then for each f ∈ Sv, form a tetrahedron tf using f and v.
Then

⋃
f∈Sv

tf is a simplicial subdivision of P .
Let V , E, and F be the number of vertices, edges and faces of Q. It suffices to show there is

a choice of vertex v such that #Sv ≤ 2V − 9. By construction, V = # Vert(Q) = # Vert(P ), and
Sv = F−deg(v), where deg(v) denotes the degree of vertex v. Furthermore, the Euler characteristic
is 2, so V −E+F = 2. Since all the faces are triangles, and each edge is on the boundary of exactly
two triangular faces, we have 3F = 2E. It follows that E = 3V − 6 and F = 2V − 4.
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Each edge has exactly two boundary vertices, so the average degree d̄ of a vertex of Q is

d̄ =
1

# Vert(Q)

∑
v∈Vert(Q)

deg(v) =
2E

V
= 6− 12

V
.

It follows that for V > 6, we have d̄ > 4. Since the average degree is greater than 4, there exists a
vertex with degree at least 5. Let v be a vertex of Q of maximal degree. Then

#Sv = F − deg(v) ≤ F − 5 = 2V − 9,

as desired. q.e.d.

Remark 4.5. The argument above can be strengthened to show #Sv ≤ 2V − 10 for V > 12.

For a group Γ acting properly discontinuously on H3, let µ(Γ) denote the volume of Γ\H3. Let
ζF (s) be the Dedekind zeta function of F ,

ζF (s) =
∑

n⊆OF

1

NF/Q(n)s
.

A classical result of Humbert asserts that for an imaginary quadratic field F of discriminant ∆, we
have

µ(PSL2(OF )) =
|∆|3/2

4π2
ζF (2).

Proposition 4.6 ([7, Theorem 7.3]). Let F be an imaginary quadratic field of discriminant ∆.
Then

µ(GL2(OF )) =
|∆|3/2

8π2
ζF (2).

Proof. Since the center of GL2(OF ) acts trivially on H3, we have µ(PSL2(OF )) = µ(SL2(OF )) and
µ(PGL2(OF )) = µ(GL2(OF )). It follows that in order to compute µ(GL2(OF )), we need to divide
µ(PSL2(OF )) by the index [PGL2(OF ) : PSL2(OF )]. This index is equal to the index of squares in
the units of OF by [1, Lemma 3.1]. This index is independent of the discriminant and is equal to
2, so the result follows. q.e.d.

Volumes of tetrahedra in H3 can be expressed in terms of Λ(θ), the Lobachevsky function given
by

Λ(θ) = −
∫ θ

0

log|2 sin(t)|dt.

It is known [28, Corollary, page 20] that the ideal tetrahedron T of maximum volume has volume

vol(T ) = 3Λ(π/3) ≈ 1.0149416 . . . . (1.1)

For F = Q(
√
−3), we have Nperf(F ) = 1, and the ideal polytope corresponding to the perfect form

is an example of such a tetrahedron. We use (1.1) to bound the number of perfect binary Hermitian
forms over imaginary quadratic fields below.
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Theorem 4.7. Let F be an imaginary quadratic field of discriminant ∆. The number Nperf(F ) of
perfect binary Hermitian forms over F satisfies the following bound:

Nperf(F ) ≥

⌈
|∆|3/2

360π2Λ(π/3)
ζF (2)

⌉
.

Proof. Let R denote a set of representatives of the GL2(OF )-orbits of perfect binary Hermitian
forms over F , so that Nperf(F ) = #R. For each perfect form A ∈ R, let pA denote the corresponding
ideal Voronoi polytope in H3 guaranteed by Theorem 3.5. Since GL2(OF ) acts on H3 by isometries
and the translates of R cover H3, the volume of the quotient GL2(OF )\H3 is bounded by the sum
of the volumes of the polytopes in R, so

µ(GL2(OF )) ≤
∑
A∈R

vol(pA) ≤ Nperf(F ) max
A∈R

(vol(pA)).

By Theorem 4.1, each A in R has at most 12 minimal vectors. Thus each pA is an ideal polytope
with at most 12 vertices. By Lemma 4.4, there is a decomposition of pA into at most 15 tetrahedra.
It follows that

max
A∈R

(vol(pA)) ≤ 15 vol(T ) = 45Λ(π/3),

by (1.1). Then

µ(GL2(OF )) =
|∆|3/2

8π2
ζF (2) ≤ 45Nperf(F )Λ(π/3),

and the result follows. q.e.d.

The proof of Theorem 4.7 is obtained by proving each Voronoi polytope has volume less than
or equal to 15 vol(T ), where T is an ideal hyperbolic tetrahedron T of maximum volume. The
observation in Remark 4.3 is that as the discriminant increases, most of the Voronoi polytopes that
arise are tetrahedra. It follows that a better estimate for the average volume of a Voronoi polytope
is vol(T ). This suggests that we might get a good estimate of Nperf(F ) by considering 15 times the
bound given in Theorem 4.7. Let E(F ) denote this value,

E(F ) =

⌈
|∆|3/2

24π2Λ(π/3)
ζF (2)

⌉
.

Then indeed the data bears out this idea. Figure 4 shows the ratio Nperf(F )/E(F ). This ratio
is close to 1 in the range of the computation, so E(F ) is a good estimate for Nperf(F ). As the
discriminant increases, the ratio appears to approach a value strictly greater than 1. This suggests
that while E(F ) is not a lower bound for Nperf(F ) for small discriminants, there exists D such that
for |∆| ≥ D, we have Nperf > E(F ).
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